Product Description

Product Parameters

The material is low carbon or alloy steel,such as ZG270-500,ZG42CrMo,ZG35Mn and so on.
 

Material:ZG25CrNiMo

Steel Grade Chemical Composition %
C Si Mn Cr Ni Mo S P
ZG25CrNiMo 0.25-0.30 0.20-0.40 0.70-0.90 0.40-0.70 0.40-0.70 0.15-0.25 <=0.571 <=0.571
ZG30CrMo 0.26-0.33 0.17-0.37 0.40-0.70 0.80-1.10 0.15-0.25 <=0.571 <=0.571
ZG35CrMo 0.32-0.40 0.17-0.37 0.40-0.70 0.80-1.10 0.15-0.25 <=0.571 <=0.571

Standard

 Yield Strength

Rp0.2  /MPa

Tensile Strength

Rb / MPa

Elogation

A / %

Reduction of Area

Z/ %

60K ≥414 ≥586 ≥18 ≥35
75K ≥517 ≥655 ≥18 ≥35
80K 585-660 ≥725 ≥18 ≥35

 

Material C Si Mn P S
ZG270-500 0.32-0.40 0.20-0.52 0.45-0.90 ≤0.035 ≤0.035

 

Material C Si Mn P S Cr Mo
ZG42CrMo 0.38-0.43 0.15-0.35 0.75-1.00 ≤0.035 ≤0.035 0.80-1.10 0.15-0.25

 

Material C Si Mn P S
ZG35Mn 0.30-0.40 0.60-0.80 1.10-1.40 ≤0.035 ≤0.035

It is up to customers’ requirement.
 

Item Standard
Casting Material EN 15713/EN 10571/BS 3100/DIN 1681/DIN17205
Casting Tolerance in Blank ISO 8062 CT 13
Size Tolerance DIN ISO 2768m
NDT ASTM A609 Level 2 or 3 /EN 12680/ASTM E94 Level 2 or 3
Heat Treatment Normalizing+Tempering+Quenching
Hardness As Required

 

Company Profile

Haian CZPT Casting Co.,Ltd. is established in 2003 in CZPT Town.

In 2007,we moved our factory to Sunzhuang town and now we can supply bigger steel castings with max. weight 45 tons.

In 2011,we built a new sand mold maiking workshop with 120 tons refinining CZPT and the max. weight can be 120 tons.

In 2013,we paid more attenion on the castings for shipbuilding and started to supply marine castings for most of domestic famous shipyards.

From 2013 to 2571,we bought more and more machines to strengthen our ability from rough machining to finished machining.

In 2571,we built another new sand mold making workshop for the quick development of market requirement.

Now we monthly supply 6000 tons different castings for different customers of different industry,such as cement mill,shipubuilding,petroleum machinery,rolling mill,forging press and so on.

Prodcution Process

1)Pattern making

We have our own wooden pattern making workshop.
But our company is always busy,
we also have around 10 sub-contractors for pattern making.
They help us for the pattern but will be inspected according to our rules.
We will record for every pattern inspection.

2)Silica or chorme sand cores
We have around 80 technicans for sand core making which is divided into around 10 teams.
Most of the technicans has more than 10 years’ experience.
Most of the sand core is made by silica sand with common sand inside of it.
The common sand will be used repeatly.
For some important position,such as R corner,we will use chorme ore sand.
The outside of the sand core,we will do the painting,burn and clean it.
We will assemble diffrent sand cores together and wait for pouring.

3)Melting and Pouring

We always do the melting after mid-night for cheaper electric charge.
And we normally do pouring in the early morning.

No. Equipment Name Quantity(Set)
1 25 tons Electrical Arc Furnace 1
2 50 tons Intermediate Frequency Furnace 2
3 120 tons Refining Furnace 1
4 120 tons VD Furnace 2

Before and after pouring,we will do the chemical compostion test.

4)Cooling

After pouring,we will wait for different time for cooling according to casting’s weight.

Item Weight in blank(Metric Tons) Cooling Time(Hour)
1 <25 48
2 >25-40 72
3 >40-55 96
4 >55-72 120
5 >72-96 144
6 >96-115 168
7 >115 192

We have our experience and rules for cooling time.
After cooling,we will shake the casting out of the steel boxes and clean them.
5)Heat Treatment
Normalizing will be 3 days while tempering is 4 days.
We have around 10 sets of heat treatment furnaces.
The biggest 1 is 12m*9m*6m.
It is also the biggest size of castings we can make.

After heat treatment,we will do the mechanical property test.
Our ordinary test block’s size is 230mm*70mm*50mm.
One casting part will min. have 3 pcs test blocks.
We have our testing center and it is approved by CNAS. 
6)Draw the line and do the first rough machining
We can do the machining from rough to finished machining.

7)NDT after rough machining

8)Welding repair
We have rich experience for making support rollers and kiln tyres,
then there is no welding for the outside working position.
This is our special technology.
Every year we supply around 400pcs kiln tyres,930pcs support roller,170 sets gear( in 2 halves).
But for some other castings,if we do the welding repair,
we will do the tempering for stress relief later.
All of our welders have the SGS certficate.

9)Shot blasting and grinding
We have a robert grinder.
We have a 120 tons rotary shot blasting table. 

10)Final machining
We have a lot of vertical lathes from 2.5m to 10m.

 

Certifications

We get approval from CNAS for our laboratory.
We also have 9 class certificate,such as ABS,DNV,NK,RINA,KR,CCS,BV and so on.

 

Packaging & Shipping

We supply a lot of castings for cement mill,rolling mill,shipbuilding and so on.

We can do the packing according to our rules or according to customers’ requirement.

 

After Sales Service

Normally there is a 12 months quality warantty.

We do at least 3 times NDT:after rough,semi-finished and finished machining.

And also the customer will do the witness during or after finished machining.

If there is also any problem when you receive the castings,
please send us photos and detailed defects,
we will negotiate with you and make a compensation.

A third party inspection before shipment is welcomed.

 

Shipping Cost:

Estimated freight per unit.



To be negotiated
Type: Chemical Hardening Sand
Casting Method: Directional Crystallization
Sand Core Type: Sodium Silicate Sand Core
Samples:
US$ 20/kg
1 kg(Min.Order)

|

Order Sample

Customization:
Available

|

Customized Request

spur gear

What are the potential challenges in designing and manufacturing spur gears?

Designing and manufacturing spur gears involve several challenges that need to be addressed to ensure optimal performance and reliability. Here’s a detailed explanation of the potential challenges in designing and manufacturing spur gears:

  • Gear Tooth Design: Designing the gear tooth profile is a critical aspect of gear design. Achieving the desired tooth shape, pressure angle, and tooth thickness distribution while considering factors such as load capacity, durability, and noise generation can be challenging. Iterative design processes, computer-aided design (CAD) software, and gear design expertise are often employed to overcome these challenges.
  • Material Selection: Choosing the appropriate material for gear manufacturing is crucial. Gears need to withstand high loads, transmit power efficiently, and exhibit excellent wear resistance. Selecting materials with suitable hardness, strength, and fatigue resistance can be challenging, especially when considering factors such as cost, availability, and compatibility with other components in the gear system.
  • Manufacturing Processes: The manufacturing processes for producing spur gears, such as hobbing, shaping, or broaching, can present challenges. Achieving precise gear tooth profiles, accurate dimensions, and proper surface finish requires advanced machining techniques, specialized equipment, and skilled operators. Maintaining tight tolerances and ensuring consistent quality during mass production can also be demanding.
  • Tooth Surface Finish: The surface finish of gear teeth plays a crucial role in gear performance. Achieving a smooth and precise tooth surface finish is challenging due to factors such as tool wear, heat generation during manufacturing, and the complexity of the gear tooth profile. Surface finishing processes, such as grinding or honing, may be required to achieve the desired surface quality.
  • Noise and Vibration: Gears can generate noise and vibration during operation, which can affect the overall performance and user experience. Designing gears to minimize noise and vibration requires careful consideration of factors such as tooth profile optimization, load distribution, gear meshing characteristics, and proper lubrication. Conducting noise and vibration analysis and implementing appropriate design modifications may be necessary to address these challenges.
  • Backlash Control: Controlling backlash, the slight gap between mating gear teeth, can be challenging. Backlash affects gear accuracy, smoothness of operation, and the ability to transmit torque efficiently. Balancing the need for adequate backlash to accommodate thermal expansion and minimize gear engagement issues while ensuring precise control of backlash can be a complex task in gear design and manufacturing.
  • Heat Treatment: Heat treatment processes, such as carburizing or quenching, are often employed to enhance the hardness and strength of gear teeth. Proper heat treatment is crucial to achieve the desired material properties and gear performance. However, challenges such as distortion, residual stresses, and material property variations can arise during heat treatment, requiring careful process control, post-heat treatment machining, or additional treatments to mitigate these challenges.
  • Quality Control: Ensuring consistent quality and reliability of spur gears is a challenge in manufacturing. Implementing effective quality control measures, such as dimensional inspections, hardness testing, and gear tooth profile analysis, is essential. Statistical process control (SPC) techniques and quality assurance systems help monitor manufacturing processes, identify potential issues, and maintain consistent gear quality.
  • Cost and Time Constraints: Designing and manufacturing spur gears that meet performance requirements within cost and time constraints can be challenging. Balancing factors such as material costs, tooling expenses, production lead times, and market competitiveness requires careful consideration and optimization. Efficient production planning, cost analysis, and value engineering techniques are often employed to address these challenges.

By recognizing these challenges and employing appropriate design methodologies, manufacturing techniques, and quality control measures, it is possible to overcome the potential challenges associated with designing and manufacturing spur gears.

It’s important to note that the specific challenges may vary depending on the gear application, size, complexity, and operating conditions. Collaboration with gear design experts, manufacturing engineers, and industry specialists can provide valuable insights and guidance in addressing the challenges specific to your spur gear design and manufacturing processes.

spur gear

What lubrication is required for spur gears?

The lubrication requirements for spur gears are essential to ensure smooth operation, minimize wear, reduce friction, and dissipate heat. Here’s a detailed explanation of the lubrication needed for spur gears:

Spur gears typically require lubricants that possess specific characteristics to provide effective lubrication. These lubricants should have the following properties:

  • Viscosity: The lubricant should have the appropriate viscosity to create a sufficient lubricating film between the gear teeth. The viscosity should be suitable for the operating conditions, including the load, speed, and temperature. Higher loads and speeds generally require higher viscosity lubricants to maintain an adequate lubricating film.
  • Extreme Pressure (EP) Properties: Spur gears may experience high contact pressures and sliding friction, especially during heavy load conditions. Lubricants with EP additives are necessary to provide enhanced protection against wear and prevent metal-to-metal contact between the gear teeth. EP additives form a protective film on the gear surfaces, reducing friction and extending gear life.
  • Anti-Wear (AW) Properties: Lubricants for spur gears should have anti-wear properties to protect the gear teeth from excessive wear and surface damage. AW additives form a protective layer on the gear surfaces, reducing friction and preventing metal-to-metal contact. This helps prolong the gear life and maintain gear system efficiency.
  • Oxidation and Corrosion Resistance: The lubricant should possess good oxidation resistance to withstand high operating temperatures without deteriorating. It should also provide corrosion protection to prevent rust and corrosion on the gear surfaces, especially in environments with moisture or aggressive contaminants.
  • Compatibility: The lubricant should be compatible with the materials used in the gear system, including the gear material, shafts, and bearings. It should not cause any adverse reactions or damage to the gear components. Consult the gear manufacturer’s recommendations for lubricant compatibility.

The specific type and grade of lubricant needed for spur gears depend on the application, operating conditions, and gear material. Common lubricants used for spur gears include mineral oils, synthetic oils, and grease. Synthetic lubricants are often preferred for their superior performance in terms of viscosity stability, oxidation resistance, and temperature extremes.

When applying lubrication to spur gears, ensure that the lubricant is evenly distributed across the gear teeth. Proper lubrication can be achieved through methods such as oil bath lubrication, oil mist lubrication, or oil application directly onto the gear teeth. The lubrication interval and quantity should be based on the gear system’s operating conditions and the lubricant manufacturer’s recommendations.

Regular inspection and maintenance of the gear system are necessary to monitor the lubricant condition, replenish as needed, and ensure the gears remain properly lubricated throughout their service life.

It is important to consult the gear manufacturer’s guidelines and recommendations, as they may provide specific lubrication requirements and considerations for their gear products.

spur gear

How do you choose the right size spur gear for your application?

Choosing the right size spur gear for your application requires careful consideration of various factors. Here’s a detailed explanation of the steps involved in selecting the appropriate size spur gear:

  1. Determine the Required Torque: Start by determining the torque requirements of your application. Calculate or estimate the maximum torque that the gear will need to transmit. Consider factors such as the power input, speed, and load conditions to determine the required torque.
  2. Identify the Speed Requirements: Determine the desired rotational speed or RPM (revolutions per minute) for your application. This will help in selecting a gear with the appropriate pitch diameter and tooth configuration to achieve the desired speed.
  3. Consider the Load Conditions: Evaluate the expected load conditions, including the magnitude and direction of the load. Determine if the load is constant or variable, and if it involves shock loads or cyclic loading. This will impact the gear’s durability and load-carrying capacity.
  4. Calculate the Pitch Diameter: Based on the torque and speed requirements, calculate the pitch diameter of the spur gear. The pitch diameter is determined by the formula: Pitch Diameter = (2 x Torque) / (Pressure Angle x Allowable Tooth Shear Stress).
  5. Select the Module Size: Choose an appropriate module size based on the gear size and application requirements. The module size determines the tooth size and spacing. Smaller module sizes are used for fine tooth profiles and higher precision, while larger module sizes are suitable for heavier loads and higher torque applications.
  6. Determine the Number of Teeth: Based on the pitch diameter and module size, calculate the number of teeth required for the gear. Ensure that the gear has an adequate number of teeth for smooth operation, load distribution, and sufficient contact ratio.
  7. Consider Space Constraints: Evaluate the available space and mounting requirements in your application. Ensure that the selected gear size can fit within the available space and can be properly mounted on the shaft or gearbox.
  8. Choose the Material: Consider the operating conditions, such as temperature, humidity, and presence of corrosive substances, to select the appropriate material for the spur gear. Common materials include steel, cast iron, brass, and plastic. Choose a material that offers the necessary strength, wear resistance, and durability for your specific application.
  9. Consider Additional Design Features: Depending on your application requirements, you may need to consider additional design features such as profile shift, hub configuration, and surface treatments. Profile shift can optimize gear performance, while specific hub configurations and surface treatments may be necessary for proper mounting and enhanced durability.

It’s important to note that gear selection is a complex process, and it may require consultation with gear manufacturers or experts in the field. They can provide guidance based on their expertise and assist in selecting the most suitable spur gear for your specific application.

By thoroughly considering factors such as torque requirements, speed, load conditions, pitch diameter, module size, number of teeth, space constraints, material selection, and additional design features, you can choose the right size spur gear that meets the demands of your application in terms of performance, durability, and efficiency.

China high quality Large Size Cast 4140 Spur Gear in Two Halves worm gear motorChina high quality Large Size Cast 4140 Spur Gear in Two Halves worm gear motor
editor by CX 2023-09-04

TAGs:

Plastic Spur Gears

As one of the plastic spur gears manufacturers, suppliers, and exporters of mechanical products, We offer plastic spur gears and many other products.

Please get in touch with us for details.

Manufacturer supplier exporter of plastic spur gears.

Recent Posts